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Abstract

Enhancing reasoning in Large Multimodal Models (LMMs)
faces unique challenges from the complex interplay be-
tween visual perception and logical reasoning, particularly
in compact 3B-parameter architectures where architectural
constraints limit reasoning capacity and modality align-
ment. While rule-based reinforcement learning (RL) excels
in text-only domains, its multimodal extension confronts two
critical barriers: (1) data limitations due to ambiguous an-
swers and scarce complex reasoning examples, and (2) de-
graded foundational reasoning induced by multimodal pre-
training. To address these challenges, we propose LMM-
R1, a two-stage framework adapting rule-based RL for mul-
timodal reasoning through Foundational Reasoning En-
hancement (FRE) followed by Multimodal Generalization
Training (MGT). The FRE stage first strengthens reasoning
abilities using text-only data with rule-based RL, then the
MGT stage generalizes these reasoning capabilities to mul-
timodal domains. Experiments on Qwen2.5-VL-Instruct-3B
demonstrate that LMM-R1 achieves 4.83% and 4.5% aver-
age improvements over baselines in multimodal and text-
only benchmarks, respectively, with a 3.63% gain in com-
plex Football Game tasks. These results validate that text-
based reasoning enhancement enables effective multimodal
generalization, offering a data-efficient paradigm that by-
passes costly high-quality multimodal training data.

1. Introduction
Recent years have witnessed remarkable progress in Large
Language Reasoning Models (LLRMs) [22, 55, 71]. Re-
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Question: As shown in the figure, rotate triangle ABC around the line where AC is located to 
obtain a rotating body, then the lateral area of the rotating body is ()
Choices:  A:12π B:15π C:30π D:60π 

To solve this problem, we need to determine the lateral area of the rotating body formed by rotating 
triangle ABC around the line where AC is located. The rotating body will be a cone with the base 
radius equal to the length of BC and the height equal to the length of AC. 
First, let's identify the dimensions of the triangle: i) The length of BC is 3; ii) The length of AC is 4. 
When the triangle is rotated around AC, the lateral surface of the cone will be formed by the arc of 
the circle with radius 3 (the length of BC) and the height of the cone will be 4 (the length of AC). 
The formula for the lateral area of a cone is given by:  
Here, the radius of the base of the cone is 3 and the slant height is 4. Therefore, the lateral area is: 

Thus, the lateral area of the rotating body is .

<think> To determine the lateral area of the rotating body formed by rotating triangle ABC around 
the line, where AC is located, we need to understand that the rotating body is a cone. The lateral 
area of a cone is given by the formula: , where  is the radius of the base of the 
cone and  is the slant height of the cone. 
In this problem, the radius  of the base of the cone is the length of the side BC, which is 3. The 
slant height  of the cone is the length of the hypotenuse of triangle ABC. First, we need to find the 
length of the hypotenuse AB. 
Using the Pythagorean theorem in triangle ABC:  .
We know AC = 4 and BC = 3, so: . 
Now, the slant height    is 5. The lateral area of the cone is: . 
Therefore, the lateral area of the rotating body is: </think>
<answer> B </answer>

LMM-R1

LMM

Figure 1. Comparison of reasoning approaches on a geomet-
ric problem. The baseline LMM (top) incorrectly identifies the
slant height, leading to an erroneous solution. In contrast, LMM-
R1 (bottom) demonstrates superior reasoning by correctly ap-
plying the Pythagorean theorem to determine the actual slant
height, showcasing how our rule-based RL approach enhances the
model’s ability to apply proper mathematical principles.

searchers have explored approaches like Monte Carlo Tree
Search (MCTS) [48, 84, 85] and Process Reward Mod-
els (PRM) [36, 48, 62], which require extensive human
annotation [36] or expensive computational resources [48,
76, 84]. DeepSeek-R1 [22] introduced a more efficient
approach with Rule-based Reinforcement Learning (RL),
which only requires prompt-answer pairs, enabling mod-
els to autonomously improve reasoning through exploration
while avoiding reward hacking [22]. When we turn our at-
tention to the multimodal domain, the challenges of enhanc-
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Question: As shown in
the figure, AB is tangent
to circle O at point B,
then angle C is equal to ()
A:36°        B:54°
C:60°        D:27°
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Question: A large square  is drawn, with a second smaller square 
completely inside it so that the squares do not touch. Line segments , and

 are drawn, dividing the region between the squares into four nonoverlapping convex
quadrilaterals, as shown. If the sides of  are not parallel to the sides of ,
prove that the sum of the areas of quadrilaterals  and  equals the sum of
the areas of quadrilaterals  and . (Note: A convex quadrilateral is a
quadrilateral in which the measure of each of the four interior angles is less than ).
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<think>Let the side length of square  be  and the side length
of square  be . Since  is a smaller square inside 
and not touching it, the segments , , , and  divide the
region into four nonoverlapping convex ....\n</think><answer>

 </answer>

<think>Since the side length of square  is ,  the answer is 
</think><answer>  </answer>

Football Game Problem

Multimodal Generalization Evaluation

Multimodal General
Problem

Stage1: Foundational 
Reasoning Enhancement

Stage2: Multimodal
Generalization Training

Two-Stage Rule-based RL

Figure 2. The top shows that LMM-R1 uses a two-stage, rule-based RL strategy to enhance reasoning capabilities. The first Foundational
Reasoning Enhancement (FRE) stage trains LMM using text-only reasoning data to improve its foundational reasoning skills. Subsequently,
the second Multimodal Generalization Training (MGT) stage then extends these capabilities across diverse multimodal domains, with
evaluation benchmarks illustrated in the bottom panel.

ing reasoning capabilities become considerably more com-
plex. Large Multimodal Models (LMMs) face greater chal-
lenges as visual information increases reasoning complex-
ity by requiring integration of both visual perception and
logical reasoning. This challenge is particularly severe for
3B LMMs, as their limited parameter capacity constrains
their capabilities. Moreover, such requirement makes high-
quality multimodal reasoning data extremely difficult to
collect [79], further complicating the use of multimodal
data with reasoning processes for training [24, 75, 93].

Given rule-based RL’s potential in the text-only do-
main [49, 89], we aim to extend it to multimodal reason-
ing. However, direct application faces two specific issues:
(1) Data limitations: Rule-based RL requires uniquely
verifiable answers for accurate rewards, yet multimodal
tasks often involve answer ambiguity (e.g., image descrip-
tion, visual QA), while also suffering from an abundance
of perception-focused data but limited complex reason-
ing examples, which may lead to insufficient reasoning in
RL; (2) Weak foundational reasoning: Models trained
on multimodal data often show weakened capabilities on
text-only tasks [37], and some LMMs using Chain-of-
Thought (CoT) actually experience performance degrada-
tion on multimodal benchmarks [16, 82], a phenomenon
amplified in smaller 3B-parameter architectures due to their
limited capacity.

To address these challenges, we propose a simple

yet effective two-stage rule-based RL training framework:
LMM-R1, aimed at enhancing the general reasoning ca-
pabilities of LMMs. While previous studies suggest that
the smaller 3B LMM inherently lacks the capacity for com-
plex multimodal reasoning, we demonstrate that strategic
two-stage training can overcome these architectural con-
straints. As shown in Fig. 1, LMM-R1 correctly applies
the Pythagorean theorem to determine the slant height of
the cone, while the baseline LMM incorrectly identifies
it, demonstrating how our approach enhances mathemati-
cal reasoning capabilities. Our framework consists of two
key stages. The first stage is Foundational Reasoning En-
hancement (FRE), which uses rule-based RL with abun-
dant high-quality text-only data to strengthen the model’s
basic reasoning abilities. This stage establishes a solid rea-
soning foundation that serves as a crucial stepping stone for
subsequent multimodal generalization, avoiding the need
for expensive multimodal data. The second stage is Mul-
timodal Generalization Training (MGT), where we con-
tinue rule-based RL training on limited complex multi-
modal reasoning tasks. This continuing training generalizes
the reasoning abilities to various multimodal domains. In
the MGT stage, we focus on two key multimodal reasoning
domains: general multimodal reasoning domain and agent-
related reasoning domain. For general multimodal reason-
ing domain, we further extend the model’s reasoning abili-
ties to various multimodal scenarios including GeoQA, Sci-
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enceQA, and ChartVQA, etc.
For the agent-related domain, which represent signifi-

cant real-world use cases of LMMs [42, 74], we evalu-
ate our approach on tasks such as Sokoban [58] and foot-
ball tasks [30]. These tasks require sophisticated reason-
ing skills, including goal identification, path planning, and
multi-image processing, thus provide meaningful assess-
ments of real-world applications. Besides, continuing train-
ing the model on Sokoban with rule-based RL further im-
proves its performance on the agent-related benchmark, fur-
ther validating LMM-R1’s effectiveness in agent domains.

In experiments, we use Qwen2.5-VL-Instruct-3B [6] as
the baseline model and apply LMM-R1 on it and the results
reveal several important findings. First, enhancing founda-
tional reasoning capabilities is crucial for multimodal rea-
soning. Using text-only data for RL training can signifi-
cantly improve the multimodal reasoning capabilities both
in general domain and agent-related domain, while directly
using multimodal data for rule-based RL yields limited im-
provement in reasoning abilities. As shown in Fig. 2, our
experiments reveal that the model fails to generate high-
quality long reasoning processes after directly trained on
verifiable multimodal data with rule-base RL. Furthermore,
LMM-R1 not only enhances the model’s reasoning capabil-
ities but also further improves its visual abilities. Specifi-
cally, LMM-R1 achieves significant performance improve-
ments across multiple multimodal benchmarks, such as a
4.5%/4.83%/3.63% performance increase over the base-
line model on the text-only/five multimodal/ Football Game
benchmarks. Our main contributions include:
• We introduce LMM-R1, the first framework using rule-

based RL with a two-stage training strategy (FRE and
MGT) to enhance multimodal reasoning without exten-
sive human annotation.

• We show that using text-only reasoning data through rule-
based RL can largely improve the foundational reasoning
ability and more importantly, such ability can be general-
ized to multimodal domains.

• We demonstrate that even for a 3B LMMs which initially
possess very limited reasoning capabilities, LMM-R1 can
significant enhance the reasoning ability, suggesting the
vast potential of LMM-R1 for broader applications.

2. Related Work
Large Multimodal Model (LMM). LMMs integrate addi-
tional modalities, particularly vision, into Large Language
Models (LLMs) [1, 4, 17, 73] to enhance general vision ca-
pabilities. Initially, models like Flamingo [3] and BLIP-
2 [33] aligned frozen vision encoders with LLMs for visual
question answering. Subsequently, the LLaVA series [39–
41], MiniGPT-4 [96], and mPLUG-Owl series [86–88] in-
troduced visual instruction tuning to improve instruction-
following. Models such as VisionLLM [78], KOSMOS-

2 [57], Shikra [11], and the Qwen-VL series [5, 6, 77] en-
hanced LMMs with visual grounding for tasks like region
description and localization. InternVL [15] scaled up vision
foundation models for alignment with LLMs. Additionally,
GPT-4V [54] and Gemini [68] demonstrated strong gen-
eral visual understanding. Mixture-of-Experts (MoE) ap-
proaches improved understanding in DeepSeek-VL2 [81],
Uni-MoE [34], MoVA [97], and MoME [63]. Some mod-
els, including SEED-X [20], Chameleon [67], Show-o [83],
Transfusion [95], and Janus [14, 80], unified vision under-
standing and generation. However, most existing LMMs
still lack reasoning capabilities.
Reinforcement Learning in LLMs and LMMs. Re-
inforcement Learning (RL) has become a key methodol-
ogy for enhancing the capabilities of LLMs and LMMs.
Early research primarily focused on Reinforcement Learn-
ing from Human Feedback (RLHF) [56], which aimed to
align model outputs with human preferences [7, 56, 66].
Recent advancements have demonstrated that RL can sig-
nificantly enhance the reasoning capabilities of these mod-
els. For instance, models such as DeepSeek-R1 [22] and
Kimi-1.5 [69] highlight the effectiveness of RL in improv-
ing LLMs’ reasoning abilities through rule-based reward.
In the multimodal domain, research on leveraging RL to
enhance LMMs’ reasoning capacities remains in its early
stages. Some researchers [50, 82] explore using Process
Reward Models (PRM) to enhance the LMMs’ reasoning
capabilities. However, these PRM-based approaches typ-
ically require powerful closed-source models to generate
large amounts of training data, resulting in high computa-
tional and financial costs. Concurrent work R1-V [13] ex-
plores rule-based RL in specific subdomains such as geom-
etry problems and object counting tasks, but lacks explo-
ration in general domains and agent-related applications.

3. Preliminaries
3.1. Reinforcement Learning for LMMs
We use the Proximal Policy Optimization (PPO) algo-
rithm [60] to train the LMMs, which aims to maximize the
following objective function:
L(θ) = Ey∼πθ

[r(y)−β ·KL(πθ(y|I, x)||πθ0(y|I, x))], (1)
where y is the generated answer, I is the image input (if
any), x is the text prompt, πθ is the policy model, πθ0 is the
fixed initial policy, and β is the Kullback-Leibler divergence
(KL) penalty coefficient.

3.2. Reward Function
We follow [22] in designing a two-part reward function for
rule-based RL:
Format Reward. We first evaluate whether the responses
follow the required structured format, i.e., wrapping the rea-
soning within <think></think> tags, followed by the
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final answer in <answer></answer> tags. This format
encourages the model to explicitly demonstrate its reason-
ing process before providing the final answer, which is cru-
cial for readability and evaluating the reasoning quality.
Accuracy Reward. The second metric evaluates the cor-
rectness of the solution. We employ a symbolic verifi-
cation approach [76] that parses both the model’s answer
and the ground-truth solution into comparable representa-
tions. These representations are then checked for equiva-
lence rather than exact string matching, allowing for differ-
ent but equivalent expressions to be recognized as correct.

The final reward function r(y) can be described simply
as follows: r(y) = α ·rf (y)+ra(y). Here, rf (y) is the for-
mat reward, and ra(y) is the accuracy reward. The param-
eter α adjusts how important the format is compared with
the accuracy. This reward function can effectively guide the
model not only to produce correct solutions, but also to ar-
ticulate its reasoning process in a structured manner.

4. LMM-R1: Two-Stage Rule-based RL
Inspired by the approach used to develop DeepSeek-R1
from DeepSeek-R1-Zero [22], we divide our multimodal
reasoning model training into two stages: (1) Increase the
model’s foundational reasoning ability with rule-based RL
using high-quality text-only; (2) Generalize reasoning abil-
ity across three distinct and complex multimodal reasoning
tasks independently.

4.1. Foundational Reasoning Enhancement (FRE)
To enhance the foundational reasoning ability of the base
model, we explore two complementary approaches:
Text-Only Reasoning Enhancement: We utilize large-
scale and high-quality verifiable text-only data for rule-
based RL. This approach leverages a wide variety of text-
based reasoning problems, which are inherently more chal-
lenging and demand more complex reasoning processes
compared to existing multimodal reasoning tasks. By train-
ing on these rich textual reasoning tasks, we aim to develop
strong foundational reasoning capabilities for the model,
which can be potentially transferred to multimodal contexts.
Multimodal Reasoning Enhancement: As a comparison,
we also utilize available multimodal verifiable data for rule-
based RL training. While this data is more limited in the
quality, this approach provides the model with direct expo-
sure to the multimodal domain. As a result, it offers more
immediate benefits for multimodal reasoning tasks and en-
hances the model’s ability to understand visual contexts.

4.2. Multimodal Generalization Training (MGT)
After enhancing the foundational reasoning capabilities of
the model, we focus on evaluating how well these capabil-
ities generalize to diverse multimodal domains. We eval-
uate across two distinct domains that test different aspects

of multimodal intelligence: General Multimodal Reasoning
Domain and Agent-Related Reasoning Domain. By contin-
uing RL training on these domains, we aim to improve the
multimodal reasoning ability of the model.

4.2.1. General Multimodal Reasoning Domain
This domain focuses on the visual perception ability to per-
form reasoning based on both image contents and texts.
Visual Reasoning-Centric Geometric Domain (Geo): We
select geometric reasoning as our first domain for contin-
ued RL training due to its natural bridge between our initial
reasoning enhancement stage and multimodal applications.
This domain shares structural similarities with the mathe-
matical reasoning used in FRE stage while introducing vi-
sual perception challenges. By continuing RL training on
geometric problems, the model learns to extract visual in-
formation and apply mathematical reasoning. This domain
is relatively simple, as the model already possesses rich pre-
trained knowledge about geometric concepts, and the data
distribution is similar to that of the FRE stage.
Perception-Reasoning Balanced Domain (PerceReason):
For our second continued RL training domain, we employ
a broad spectrum of multimodal tasks from over 20 distinct
datasets that require more perception ability than geomet-
ric domain, including visual question answering, document
understanding, mathematical reasoning, and scientific rea-
soning. This diverse training domain exposes the model to
various visual contexts and reasoning problems simultane-
ously. By continuing RL training across this comprehensive
collection, the model must adapt its reasoning capabilities
to handle heterogeneous inputs and tasks—mirroring real-
world application scenarios. This domain presents a mod-
erate challenge since the model has rich pretrained multi-
modal knowledge, but the data distribution differs signifi-
cantly from the FRE stage. This stage evaluates whether
enhancing reasoning ability by FRE stage training builds
a strong foundation model. The foundation model is ex-
pected to be efficiently transferred to various challenging
multimodal domain via continued reinforcement learning.

4.2.2. Agent-Related Reasoning Domain
To evaluate and enhance the model’s ability to act as
an agent in complex visual environments, we follow
MageBench [92] to evaluate the how well our enhanced
reasoning capabilities transfer to tasks requiring sequential
decision-making and planning in visual contexts. We select
two domains from MageBench in the following.
Sokoban Planning Domain: Sokoban is a classic puzzle
game that requires the agent to push boxes to designated
target locations. This domain evaluates the model’s spatial
reasoning and planning capabilities, as it must visualize po-
tential moves, anticipate deadlocks, and generate an optimal
sequence of actions.
Football Game Domain: This domain places the model
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Table 1. Results (%) across benchmarks categorized by three reasoning intensities: High-Level Reasoning (Text-Only) (MATH500/GPQA),
Multimodal Reasoning (OlympiadBench/MathVision/MathVerse), and General Multimodal (MM-Star/MathVista). The "MM Avg" col-
umn displays the average performance across all multimodal benchmarks. The best result is bolded and the second-best is underlined.

Model Text-Only MM Reasoning-Dominated MM General MM Avg
MATH GPQA Avg Olymp. MathVis. MathVer. MM-Star MathVista

Qwen2.5-VL CoT 63.40 30.30 46.85 10.28 23.59 34.64 51.40 60.70 36.12

Foundational Reasoning Enhancement Stage

FRE-Multi 61.80 27.27 44.54 11.80 24.74 38.45 58.76 64.20 38.71
FRE-Text 65.40 36.87 51.14 15.62 25.76 38.83 55.15 61.40 39.35

Multimodal Generalization Training Stage

MGT-Geo 65.80 32.32 49.06 14.63 26.84 41.80 54.39 59.00 39.33
MGT-PerceReason 63.80 38.89 51.35 15.62 26.35 41.55 58.03 63.20 40.95

in a multi-agent football environment where it must con-
trol a player to achieve game objectives. The model needs
to make strategic decisions based on the positions of team-
mates and opponents, demonstrating cooperation and inter-
action skills in a competitive setting.

In addition, we also continually train the model on
Sokoban via rule-based RL to enhance the model’s agent
capabilities, further validating our approach’s effectiveness
in agent domains. Notably, these domains represent scenar-
ios that the model has not encountered during pretraining
and serve as a challenging test of generalization, as they
have data distributions significantly different from our first-
stage rule-based RL training.

5. Experiments
In the experiments, we use Qwen2.5-VL-Instruct-3B [6] as
our baseline model and apply LMM-R1 framework on it.
First, by training the baseline model with rule-based RL
in multimodal and text-only datasets respectively, we get
the reasoning-enhanced foundation model: FRE-Multi and
FRE-Text (FRE stage). Then we continue the rule-based RL
training on the FRE-* model in other multimodal domains
(MGT stage) and get the MGT-Geo, MGT-PerceReason
model and MGT-Sokoban. Besides, we also train baseline
model with rule-based RL by using the same datasets of
different domains and name these models as Direct-RL-*
(e.g., Direct-RL-Geo, Direct-RL-Sokoban) for comparison
with our MGT-* models.

5.1. Setting and implementation details
Datasets: We use multiple datasets across different training
stages in our experiments.
FRE Stage: We use the following datasets for the FRE
stage to enhance the reasoning capability of the model:
(1) Text-Only RL Dataset: We use the prompt-answer
pairs from DeepScaler-Preview-Dataset [49], which con-
tains 40k math prompt-answer pairs and all of them have

unique verifiable answers. (2) Verifiable Multimodal-65K
(VerMulti): We use the MathV360K [64] dataset, which
contains 360k multimodal problems with diverse domains,
including arithmetic, geometry, calculus, science, and more.
The dataset is further filtered, saving prompts that have ver-
ifiable numeric answers (e.g., 123, 4.11) or option answer
(e.g., A, B, C, D). Finally, we get 130k multimodal prob-
lems. To reduce the cost of training, we randomly sample
65k data from the filtered dataset for rule-based RL training.
MGT Stage: We continue training FRE-Text model with
rule-based RL using different datasets for different do-
mains. (1). Visual Reasoning-Centric Geometry Do-
main: We extract the geometry problems from Ver-
Multi, collecting 15K geometry problems and getting the
VerMulti-Geo. (2). Perception-Reasoning Balanced Do-
main: We directly use the VerMulti dataset. (3). Sokoban
Domain: We follow [58] to randomly generate 11500 en-
vironments for sokoban game as our training set.

See implementation details in Appendix A.

5.2. Experiments Results
We evaluate the performance of the model from two main
aspects: General Task Benchmarks in Sec. 5.2.1 and Agent-
Related Benchmarks in Sec. 5.2.2. General Task Bench-
marks focus on the model’s fundamental capabilities in
reasoning, visual perception, and multimodal understand-
ing, which serve as the foundation for handling complex
tasks. In contrast, Agent-Related Benchmarks concentrate
on assessing the model’s performance in planning, decision-
making, and goal-oriented tasks, which are essential abili-
ties for building intelligent systems capable of autonomous
operation in real-world environments.

5.2.1. General Task Benchmarks
To comprehensively evaluate our models’ capabilities, we
conduct experiments across both multimodal and text rea-
soning benchmarks. For multimodal evaluation, we use five
benchmarks as categorized in Tab. 1: OlympiadBench [24],
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MathVision [75] test, and MathVerse [93] testmini for
reasoning-dominated tasks, while MM-Star [12] and Math-
Vista [47] testmini assess general multimodal capabilities.
Complementing this, we evaluate pure reasoning abilities
using MATH500 [36] and GPQA [59] datasets. MATH500
consists of 500 mathematics problems covering algebra,
geometry, probability, and calculus, whereas GPQA com-
prises 448 multiple-choice questions in biology, physics,
and chemistry authored by domain experts. This dual eval-
uation approach comprehensively assesses the reasoning
ability of the model in various scenario ranging from basic
text-only context and challenging multimodal context
Foundational Reasoning Enhancement Analysis Our
evaluation across both multimodal and text-only reasoning
benchmarks reveals distinct performance patterns between
FRE-Multi and FRE-Text models, highlighting important
trade-offs in multimodal model training.

On Text-Only Benchmarks, the divergence becomes
even more pronounced. FRE-Text shows substantial im-
provements over the baseline, with a 2.0% increase on
MATH500 and 6.57% on GPQA, resulting in a 4.29%
overall enhancement in text-only performance. In con-
trast, FRE-Multi exhibits performance declines of 1.6%
on MATH500 and 3.03% on GPQA, suggesting that train-
ing the model with relatively simple multimodal data may
compromise its complex reasoning abilities, despite the im-
provement in visual reasoning ability.

On Multimodal Benchmarks, both models demonstrate
improvements over the baseline Qwen2.5-VL, but with
different strengths. For general multimodal tasks, FRE-
Multi shows substantial gains with a 3.5% improvement
on MathVista and 7.36% on MM-Star, while FRE-Text ex-
hibits more modest improvements of 0.7% and 3.75%, re-
spectively. This suggests that RL with multimodal data
more effectively enhances general visual capabilities. Con-
versely, for multimodal reasoning-dominated tasks, FRE-
Text demonstrates stronger performance with improve-
ments of 5.34% on OlympiadBench, 2.17% on MathVision,
and 4.19% on MathVerse, compared to FRE-Multi’s smaller
gains of 1.52%, 1.15%, and 3.81%, respectively.

These results reveal a fundamental trade-off: multi-
modal RL enhances vision-related capabilities but may
compromise pure reasoning abilities, whereas text-only
RL strengthens core reasoning capabilities that effectively
transfer to multimodal reasoning contexts while providing
more limited benefits for tasks primarily requiring visual
perception. This performance dichotomy underscores the
importance of training data selection in developing models
with balanced capabilities.

Based on these findings, we select FRE-Text as our
reasoning-enhanced foundation for subsequent experi-
ments, as it provides the strongest foundational reason-
ing capabilities while maintaining competitive performance

on multimodal tasks, offering the best platform for further
domain-specific enhancement.
Multimodal Generalization Training Analysis
Geo Domain: We continue rule-based RL training on the
VerMulti-Geo dataset to obtain the MGT-Geo model. As
shown in Tab. 1, MGT-Geo surpasses the baseline by 3.21%
on multimodal benchmarks, demonstrating strong multi-
modal capabilities.

To evaluate geometry-specific performance, we analyze
results on geometry subsets from MathVision (categorized
by mathematical geometry subfields: Analytic, Combina-
torial, Metric, and Solid, which are the in-domain ques-
tions for VerMulti-Geo) and MathVerse (classified by vi-
sual dependency: from Text Domain to Vision Only). For
comparison, we also train the baseline, Qwen2.5-VL, with
the same VerMulti-Geo dataset by rule-based RL training
method and get the Direct-RL-Geo, which skips the FRE
stage. Results are presented in Tab. 2.

From Tab. 2, Direct-RL-Geo improves performance on
simpler MathVerse tasks by 3.36% but decreases perfor-
mance on more complex MathVision by 1.13% compared
to the baseline, indicating limitations in developing robust
reasoning through domain-specific training alone. While
MGT-Geo achieves superior performance across all bench-
marks, with significant improvements over FRE-Text on
MathVision by 3.35% and MathVerse by 2.97%.

A particularly revealing finding emerges when examin-
ing the “Vision Only” category in MathVerse. Here, FRE-
Text shows a 3.43% decline compared to the baseline, in-
dicating that text-only reasoning enhancement may come at
the cost of visual perception capabilities. However, MGT-
Geo not only recovers but significantly enhances these capa-
bilities, achieving an 8.25% improvement over the baseline
and an impressive 11.68% improvement over FRE-Text. In-
terestingly, Direct-RL-Geo actually decreases performance
in this category by 1.4%, further highlighting the impor-
tance of the FRE stage.
PerceReason Domain: Inspired by the success of the
MGT-Geo model, we continue the rule-based RL training
on the Perception-Reasoning Balanced Domain with Ver-
Multi. The comprehensive benchmark results are shown
in Tab. 1. The MGT-PerceReason model shows substantial
performance improvements compared to FRE-Text, with an
average increase of 1.6% across multimodal benchmarks.

This improvement is particularly pronounced in bench-
marks that emphasize general visual tasks: the model
achieves a 1.8% gain on MathVista and a 2.88% improve-
ment on MM-Star. Notably, these enhancements in visual
capabilities do not come at the expense of reasoning perfor-
mance. In fact, MGT-PerceReason maintains or even im-
proves upon the strong reasoning capabilities of FRE-Text
across text-only and reasoning-focused benchmarks.

These results provide compelling evidence that our pro-
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Table 2. Results (%) on geometry-related benchmarks. For MathVision, results are reported for Analytic/Combinatorial/Metric/Solid
Geometry. For MathVerse, results are categorized by modality emphasis: TD (Text Domain)/TL (Text Lite)/VI (Vision Intensive)/VD
(Vision Domain)/VO (Vision Only). The best performance in each subfield is bolded.

Model MathVision MathVerse

Analy. Combin. Metric Solid AVG TD. TL. VI. VD. VO. Avg

Qwen2.5-VL CoT 34.52 20.78 26.33 20.49 25.53 43.15 35.41 33.38 32.87 28.43 34.64
Direct-RL-Geo 30.95 17.53 26.59 22.54 24.40 47.59 40.36 38.96 36.04 27.03 38.00
FRE-Text 28.57 22.08 31.01 24.10 26.44 48.22 42.26 39.72 38.96 25.00 38.83
MGT-Geo 36.90 22.73 31.66 27.87 29.79 51.02 42.51 39.72 39.09 36.68 41.80

posed two-stage training framework creates a powerful syn-
ergistic effect. The FRE stage provides a stronger plat-
form for domain-specific training, enabling simultaneous
improvement in both reasoning and visual perception ca-
pabilities that cannot be achieved through either approach
alone. By first enhancing fundamental reasoning capa-
bilities through complex text-only data before introducing
multimodal data, this approach effectively augments the
model’s performance on general visual tasks while preserv-
ing its core reasoning abilities. Importantly, this two-stage
training strategy successfully circumvents the performance
degradation in reasoning tasks that typically occurs when
models are trained directly with multimodal RL data (as ob-
served with the FRE-Multi model). The consistent improve-
ments across diverse benchmarks demonstrate that FRE
stage provides a more robust platform for developing mul-
timodal models that excel in both perception-heavy and
reasoning-intensive tasks, effectively boosting multimodal
intelligence through an efficient training paradigm.

5.2.2. Agent Domain Generalization

One of the most intriguing applications for LMM is agents,
which involves more complex reasoning. Specifically, it re-
quires reasoning and perceiving interleaved process. We se-
lect Sokoban as a test scenario for rule-based RL training,
as it is easy to scale and verify. The model is required to ob-
serve only the initial state and then, after deliberation, pro-
vide the complete sequence of actions in a single output. We
randomly initialize 10,000 simple difficulty Sokoban lev-
els and trained using the PPO algorithm. For comparison,
MageBench [92] provides several environments and level
settings for Sokoban that enable fair comparison. During
training, as before, we use the rule-based task reward from
MageBench, along with a minor format reward. The train-
ing results are shown in Tab. 3.

During testing, we evaluate not only the results of
Sokoban-Global, which shares the same environment and
agent settings as the training phase, but also test an un-
seen environment with completely different settings in
MageBench, specifically the Football-Online results. The
last block in Tab. 3 presents the original QwenVL-2.5 re-
sults, as well as the results from text-only training discussed

Table 3. Agent-level evaluation on MageBench-Sokoban and
Football environments. All values represent well-defined rewards.
Global setting: The model observes the initial scene once and
determines all subsequent actions. Online setting: The model ob-
serves the game scene and makes one action per time step.

Model Sokoban-Global Football-Online

Idle baseline 41.18 2.53
Human level 83.63 54.68

Claude-3.5-Sonnet 48.26 16.94
Gemini-1.5-pro 46.13 18.33
GPT-4o 46.09 21.20

Qwen2.5-VL-3B 42.35 15.36
FRE-Text 44.81 (+2.46) 18.46
Direct-RL-Sokoban 46.89 (+4.54) 16.32
MGT-Sokoban 47.91 (+5.56) 18.99

earlier. The results indicate that the reasoning capabilities
derived from text-only training exhibit stable generaliza-
tion in agent environments. Training within the correspond-
ing in-domain environment can demonstrate further perfor-
mance improvements. Using a model with only 3B param-
eters, after training, it can match or even surpass product-
level large models. This suggests that rule-based reinforce-
ment learning may have significant potential applications in
the fields of agent and embodied AI planning.

5.3. Discussion
Generalization Capability of RL Compared to SFT
To investigate the generalization capabilities of different
training paradigms, we conduct a comparative analysis be-
tween RL and SFT approaches during the first training
stage. For this experiment, we use identical text datasets,
DeepScaler-40K [49], for both training methodologies. For
the SFT approach, we first generate comprehensive reason-
ing processes for each query-answer pair using DeepSeek-
R1-Distill-Qwen-14B [22], then employ these structured
triplets, i.e., (query, reasoning process, answer), as train-
ing data to obtain SFT-Text. Subsequently, we fine-tune the
SFT-Text model on the VerMulti-Geo dataset using rule-
based RL to produce SFT-Geo. For the RL approach, we
use FRE-Text and MGT-Geo as the comparative models to
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Figure 3. Results (%) on geometry domain with SFT and RL.

SFT-Text and SFT-Geo, respectively.
We evaluate both training paradigms on general reason-

ing capabilities and geometry domain generalization perfor-
mance, with results shown in Fig. 3. Our findings reveal that
direct SFT with text data on the baseline model leads to sig-
nificant performance degradation, exhibiting catastrophic
forgetting [90]. In contrast, using the same data for RL
training results in substantial performance improvements.
Furthermore, when evaluated on downstream tasks, SFT-
Geo begins to recover performance on geometry tasks, with
overall downstream performance exceeding the baseline but
still falling short of the RL model. These results demon-
strate that compared to SFT, RL not only avoids catas-
trophic forgetting but also more effectively transfers reason-
ing capabilities to other domains.

Why Multimodal RL is not better than Text-only RL?
Our experimental results reveal a counterintuitive phe-
nomenon: while multimodal RL training enhances perfor-

FRE-Multi
FRE-Text

MGT-PerceReason

Figure 4. Response length trends of 3 models during RL training.

mance on multimodal benchmarks, it simultaneously leads
to a decline in text-only reasoning capabilities compared to
the baseline model. To elucidate this paradox, we conduct
a detailed analysis of model behavior during the RL train-
ing process across different datasets, examining both output
patterns and reasoning strategies.

We show the response length trending of models trained
on different datasets exhibit striking divergence in Fig. 4.
FRE-Multi shows a consistent downward trend in response
length, decreasing from approximately 150 tokens at ini-
tialization to below 80 tokens after 120 training steps. In
contrast, FRE-Text demonstrates rapid growth in response
length during the initial training phase, rising from 600 to-
kens to over 800 tokens within the first 40 steps, after which
it maintains a stable length around 800 tokens for the re-
mainder of the training period. While MGT-PerceReason
demonstrates a particularly interesting pattern in Fig. 4. Af-
ter FRE stage training, its response length stabilizes be-
tween 200-250 tokens during subsequent multimodal train-
ing, maintaining a balance between reasoning depth and vi-
sual recognition efficiency.

Furthermore, we analyze sampled outputs across differ-
ent training stages to elucidate this divergence. Comparing
model outputs between the initial model and after 120 train-
ing steps reveals distinct patterns. The FRE-Multi model
exhibits a clear trend toward brevity: while the initial model
produces relatively detailed reasoning, by 120 steps it gen-
erates significantly condensed responses that directly iden-
tify visual elements with minimal reasoning steps, despite
maintaining answer accuracy. Conversely, the FRE-Text
model demonstrates the opposite trajectory: its responses
after 120 steps become more elaborate compared to the ini-
tial model, incorporating additional reasoning steps, explicit
mathematical formulations, and more comprehensive ex-
planations. This pattern aligns with the quantitative length
measurements presented in Fig. 4. Detailed examples of
these contrasting behaviors are given in Appendix F.

The results suggest that the two-stage training strategy
is a practical and advantageous approach for developing ro-
bust multimodal reasoning models, especially given the cur-
rent scarcity of high-quality multimodal reasoning data.
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6. Conclusion
We introduce LMM-R1, a framework designed to enhance
multimodal reasoning in LMMs through rule-based RL.
This is achieved via a two-stage strategy: Foundational
Reasoning Enhancement (FRE) and Multimodal Gener-
alization Training (MGT). Despite the initial limitations
in reasoning capabilities of 3B LMMs, LMM-R1 sub-
stantially improves their performance. Experiments show
that text-only reasoning establishes a solid foundation for
multimodal generalization, creating a synergistic effect that
outperforms models trained solely on text or multimodal
data. In agent-related domains, LMM-R1 notably enhances
performance in complex planning tasks. Future work
involves extending our framework to additional LMMs and
developing methods for synthesizing high-quality multi-
modal reasoning data for rule-based reinforcement learning.
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Appendix

A. Training Details

A.1. Datasets

Text-Only Dataset: We use DeepScaleR-Preview [49] as
the text-only math reasoning dataset to train FRE-Text. This
dataset is composed of AIME(American Invitational Math-
ematics Examination) problems (1984-2023), AMC (Amer-
ican Mathematics Competition) problems (prior to 2023),
Omni-MATH [19] and STILL [72]. It is filtered to keep
those that have verifiable answers and to remove redundant
problems, leaving 40.3k high-quality data points.

VerMulti-65K: We use 65k verifiable problems filtered
from MathV360K to train FRE-Multi, which consist of
problems from various sources as shown in Tab. A4.

Split Count Split Count

IconQA [44] 7166 TQA [29] 2130
PMC-VQA [94] 6760 DocVQA [52] 1974
TabMWP [46] 6732 TextVQA [65] 1462
A-OKVQA [28] 6185 VQA2.0 [21] 1316
FigureQA [27] 4995 ChartQA [51] 1115
ScienceQA [45] 4243 PlotQA [53] 1020
GeoQA+ [8] 4062 Super-CLEVR [35] 1016
DVQA [26] 3317 VQA-AS [2] 404
Geometry3K [43] 2845 MapQA [9] 278
UniGeo [10] 2767 VizWiz [23] 204
AI2D [28] 2603 GEOS [61] 129
CLEVR-Math [38] 2393 VQA-RAD [32] 2

Table A4. Statistics of VerMulti.

VerMulti-Geo15K: We use 15k geometry problems from
MathV360K [64] to train MGT-Geo, which consists with
GEOS [61], Geometry3K [43], GeoQA+ [8], UniGeo [10],
and TQA [29]. The distribution of data is shown in Tab. A5.

Sokoban Training Datasets: For the Sokoban domain,
we generated a diverse set of 11,500 environments by us-
ing gym-sokoban [58] with varying difficulty levels to train
MGT-Sokoban. Specifically, we created 5,000 environ-
ments using the sokoban-small-v0 difficulty setting and an-
other 5,000 environments with sokoban-small-v1 difficulty.
To ensure the model encounters a wide range of scenarios,
we further supplemented the dataset with 500 environments
each from sokoban-v0, sokoban-v1, and sokoban-large-v0
difficulty settings. This distribution allows the model to
learn planning strategies across different board sizes and
complexity levels, from simpler small-scale puzzles to more
challenging large configurations.

Split Count

GEOS 271
GeoQA+ 8155

Geometry3K 2776
TQA 25

UniGeo 5583

Table A5. Statistics of VerMulti-Geo15K.

A.2. Training Hyper-Parameters
Our training infrastructure is built upon OpenRLHF [25],
and we use the same set of hyper-parameters for RL, as
shown in Tab. A7.

We train SFT-Text 2 epochs with batch-size=256,
learning-rate=5e-6, warmup-ratio=0.03.

B. Detailed Performance on MM-Star
To validate the improvement of our model on general visual
tasks, we also provide the MM-Star different split results
in Tab. A6. The results show that MGT can improve the
perception ability of FRE-Text.

Model Coarse Fine-grained AVG

QwenVL-2.5 CoT 68.56 47.52 58.04
FRE-Multi 69.32 52.05 60.68
FRE-Text 65.20 46.30 55.75
MGT-PerceReason 67.99 48.19 58.09

Table A6. Performance comparison (%) on different perception
categories in MM-Star benchmark. Coarse Perception includes
tasks requiring basic object recognition, while Fine-grained Per-
ception involves more detailed visual discrimination tasks.

C. Evaluation Details
C.1. Text-Only Benchmarks
We use LightEval [18] to evaluate our models on text-
only mathematical reasoning benchmarks. LightEval is
a lightweight evaluation framework that provides stan-
dardized evaluation protocols for language models. For
our evaluation, we focus on two challenging mathemati-
cal reasoning benchmarks: MATH-500 [36] and GPQA-
Diamond [59].

Evaluation Protocol. We implement custom evaluation
tasks within the LightEval [18] framework to ensure con-
sistent and reproducible evaluation. For each benchmark,
we define specific prompt templates that encourage step-
by-step reasoning and clear answer formatting, as shown in
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FRE-Text FRE-Multi MGT-Geo MGT-PerceReason MGT-Sokoban

train_batch_size 128 256 256 256 128
rollout_batch_size 128 256 256 256 128

temperature 1 1 1 1 1
n_samples_per_prompt 16 16 16 16 16

max_epochs 1 1 1 1 1
num_episodes 1 2 2 2 4

generate_max_len 8192 8192 8192 8192 8192
init_kl_coef 1e-3 1e-3 1e-3 1e-3 0.0

lambd 1 1 1 / 1
gamma 1 1 1 / 1

actor_learning_rate 1e-6 1e-6 4e-7 4e-7 1e-6
critic_learning_rate 9e-6 9e-6 9e-6 / 5e-6

warm-up ratio 0.03 0.03 0.03 0.03 0.03

Table A7. Training Hyper-parameters.

Appendix E. The evaluation is conducted with a maximum
generation length of 32,768 tokens to accommodate exten-
sive reasoning chains.

Metrics. For MATH-500, we employ a specialized metric
that extracts answers from LaTeX expressions, with prior-
ity given to boxed answers. This metric uses multilingual
extractive matching with a precision of 5 decimal places.
For GPQA-Diamond, we use a letter-based extraction met-
ric that identifies the selected multiple-choice option (A, B,
C, or D) from the model response.

Both metrics are implemented using LightEval’s multi-
lingual extractive match framework, which provides robust
answer extraction capabilities even when models deviate
slightly from the requested output format. This approach
ensures fair comparison across different model architectures
and response styles.

C.2. Multimodal Benchmark
We use LMMs-Eval [91] for multimodal benchmark evalu-
ation, which is a comprehensive and lightweight evaluation
toolkit for LMMs. We evaluate our models in represen-
tative challenging multimodal reasoning benchmarks, in-
cluding MathVision [75], MathVerse [93], MathVista [47],
OlympiadBench [24] and MM-Star [12].

Evaluation Protocol. We integrate vLLM [31] into
LMMs-Eval and deploy our models on vLLM for efficient
evaluation. To accurately extract the answer of the model
for each test case, we deploy Qwen2.5-14B-Instruct [70] as
a judge, using the prompt shown in Appendix E.

The system prompts of our models used in training
and evaluation are the same, which are also listed in Ap-
pendix E. Furthermore, we find that using the same system

prompt for the baseline model degrades its performance.
Thus, for fairness, we do not use our system prompt for
the baseline model.

C.3. Agent-Related Benchmark
We follow the MageBench [92] to evaluate our model in
Sokoban and football tasks.

Agent Formulation. We use two agent designs from
MageBench [92] for our evaluations:
Global Planner Agent: This agent observes the initial en-
vironment once and plans all subsequent actions without
further observations. Its decision process is:

πθ(psys, ptask, pcot, pio) → a1, a2, ..., aT (A2)

Online Planner Agent: This agent analyzes each step
and acts based on previous actions (AM) and observations
(OM). We set AM = 5 and OM = 1. Its decision process is:

πθ(psys, at−AM :t, ot−OM :t, pcot, pio) → at+1 (A3)

Task Descriptions.
• Sokoban-Global: The model sees the initial puzzle once

and plans all moves in advance. This tests the model’s
ability to mentally simulate the environment.

• Football-Online: The model controls a player in a dy-
namic environment, making decisions based on changing
game states. This tests real-time decision-making in com-
plex scenarios.
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D. Training Curves
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Figure A5. Training Curve of FRE-Text.
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Figure A6. Training Curve of FRE-Multi.
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Figure A7. Training Curve of MGT-Geo.
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Figure A8. Training Curve of MGT-PerceReason.
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E. Prompts for Training and Evaluation

System Prompts for Training and Evaluation

You are a helpful assistant good at solving math problems with step-by-step reasoning. You
should first thinks about the reasoning process in the mind and then provides the user with
the answer. Your answer must be in latex format and wrapped in $...$.The reasoning process
and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i
.e., <think> Since $1+1=2$, so the answer is $2$. </think><answer> $2$ </answer>, which
means your output should start with <think> and end with </answer>.

Prompt Templates for Text-Only Benchmarks

Solve the following math problem efficiently and clearly. The last line of your response should
be of the following format: ’Therefore, the final answer is: $\boxed{ANSWER}$. I hope it is
correct’ (without quotes) where ANSWER is just the final number or expression that solves
the problem. Think step by step before answering.

{Question}

Answer the following multiple choice question. The last line of your response should be of the
following format: ’Answer: $LETTER’ (without quotes) where LETTER is one of ABCD. Think step
by step before answering.

{Question}

A) {A}
B) {B}
C) {C}
D) {D}

Prompt of Answer Extraction for Qwen2.5-14B-Instruct

Please read the following example. Then extract the answer from the model response and type it
at the end of the prompt.

Hint: Please answer the question requiring an integer answer and provide the final value, e.g.,
1, 2, 3, at the end.

Question: Which number is missing?

Model response: The number missing in the sequence is 14.

Extracted answer: 14

Hint: Please answer the question requiring a floating-point number with one decimal place and
provide the final value, e.g., 1.2, 1.3, 1.4, at the end.

Question: What is the fraction of females facing the camera?

Model response: The fraction of females facing the camera is 0.6, which means that six out of
ten females in the group are facing the camera.

Extracted answer: 0.6

Hint: Please answer the question requiring a floating-point number with two decimal places and
provide the final value, e.g., 1.23, 1.34, 1.45, at the end.

Question: How much money does Luca need to buy a sour apple candy and a butterscotch candy? (
Unit: $)
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Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.

Extracted answer: 1.45

Hint: Please answer the question requiring a Python list as an answer and provide the final list
, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.

Question: Between which two years does the line graph saw its maximum peak?

Model response: The line graph saw its maximum peak between 2007 and 2008.

Extracted answer: [2007, 2008]

Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the
end.

Question: What fraction of the shape is blue?\nChoices:\n(A) 3/11\n(B) 8/11\n(C) 6/11\n(D) 3/5

Model response: The correct answer is (B) 8/11.

Extracted answer: B

Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the
end.

Question: {question}

Model response: {response}

Extracted answer:

F. Case Study

Case Study of Qwen2.5-VL CoT and FRE-Text

Question: Find the sum of all real solutions to the equation x−2
x2+4x+1 = x−5

x2−10x .
——————————————————————————————————————
Qwen2.5-VL CoT:

Rearrange equation: divide by x^2 and let’s use partial fractions to simplify the equation.
To simplify, write each fraction as a difference: $1 + \frac{x-4}{(x+2)(x+2)(x-5)} = 1 + \frac{(

x-2) - (x-5)}{x^2-10x}$.
3. 2x^2 - 4x - 16 = 0.
4. Add 16 to both sides: 2x^2 - 4x = 0
5. Divide by 2: x^2 - 2x = 0.
6. Take out x: x(x-2) = 0. Elie: x = 0 or x = 2.
Therefore, the sum of all real solutions to the equation is x = 0 + 2 = $\boxed{2}$.

——————————————————————————————————————
FRE-Text:

<think>
To solve the equation \(\frac{x-2}{x^2+4x+1} = \frac{x-5}{x^2-10x}\), we first eliminate the

denominators by cross-multiplying:

\[
(x-2)(x^2-10x) = (x-5)(x^2+4x+1)
\]

Expanding both sides, we get:

\[
x^3 - 10x^2 - 2x^2 + 20x = x^3 + 4x^2 + x - 5x^2 - 20x - 5
\]
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Simplifying both sides, we have:

\[
x^3 - 12x^2 + 20x = x^3 - x^2 - 19x - 5
\]

Subtracting \(x^3\) from both sides, we get:

\[
-12x^2 + 20x = -x^2 - 19x - 5
\]

Rearranging all terms to one side, we have:

\[
-12x^2 + x^2 + 20x + 19x + 5 = 0
\]

Simplifying further, we get:

\[
-11x^2 + 39x + 5 = 0
\]

This is a quadratic equation in the form \(ax^2 + bx + c = 0\), where \(a = -11\), \(b = 39\),
and \(c = 5\). The sum of the solutions of a quadratic equation \(ax^2 + bx + c = 0\) is
given by \(-\frac{b}{a}\). Therefore, the sum of the solutions is:

\[
-\frac{39}{-11} = \frac{39}{11}
\]

We need to check if the solutions satisfy the original equation and the denominators. The
solutions to the quadratic equation are:

\[
x = \frac{-39 \pm \sqrt{39^2 - 4(-11)(5)}}{2(-11)} = \frac{-39 \pm \sqrt{1521 + 220}}{-22} = \

frac{-39 \pm \sqrt{1741}}{-22}
\]

The solutions are:

\[
x = \frac{39 \mp \sqrt{1741}}{22}
\]

We need to ensure that these solutions do not make the denominators zero. The denominators are
\(x^2 + 4x + 1\) and \(x^2 - 10x\). Substituting \(x = \frac{39 \mp \sqrt{1741}}{22}\) into
these denominators, we check:

For \(x^2 + 4x + 1\):

\[
\left(\frac{39 \mp \sqrt{1741}}{22}\right)^2 + 4\left(\frac{39 \mp \sqrt{1741}}{22}\right) + 1 \

neq 0
\]

For \(x^2 - 10x\):

\[
\left(\frac{39 \mp \sqrt{1741}}{22}\right)^2 - 10\left(\frac{39 \mp \sqrt{1741}}{22}\right) \neq

0
\]
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Since the solutions do not make the denominators zero, they are valid. Therefore, the sum of all
real solutions is:

\[
\boxed{\frac{39}{11}}
\]
</think><answer> $\frac{39}{11}$ </answer>

Case Study of Qwen2.5-VL CoT and FRE-Text

Question: How many positive integers b have the property that logb 729 is a positive integer?
——————————————————————————————————————
Qwen2.5-VL CoT:

We need to find positive integers $b$ such that $\log_{b} 729$ is a positive integer. This means
that $b^{\log_{b} 729} = 729$.

Let’s find the prime factorization of 729. We have $729 = 3^6$.

We know that if $\log_{b} 3^6$ is a positive integer, then $b$ must be a power of 3. Let’s write
$b = 3^x$. Then we have $\log_{3^x} 3^6 = 2$ since $b^q = 3^6$ implies that $3^{x \cdot \
log_{3} 3^6} = 3^6$ and $\log_{3} 3^6 = 6$. Thus, we have $x \cdot \log_{3} 3^6 = 6$. This
simplifies to $x \cdot 6 = 6$, so $x = 1$.

This means $b = 3^1 = 3$ is a solution. We need to check other powers of 3, but since $\log_{3}
3^6 = 6$, any other power of 3 greater than 3 would result in a non-positive integer for $\
log_{b} 729$. Therefore, there is only one positive integer $b$ for which $\log_{b} 729$ is
a positive integer.

The answer is: 1

——————————————————————————————————————
FRE-Text:

<think>
To determine how many positive integers \( b \) have the property that \(\log_{b} 729\) is a

positive integer, we start by letting \(\log_{b} 729 = k\), where \( k \) is a positive
integer. This equation can be rewritten in its exponential form as:

\[ b^k = 729 \]

We need to find all possible values of \( b \) such that \( 729 \) is a perfect power of \( b \)
. First, we factorize \( 729 \):

\[ 729 = 3^6 \]

For \( b^k = 3^6 \) to hold, \( b \) must be a power of \( 3 \). Let \( b = 3^m \), where \( m
\) is a positive integer. Then we have:

\[ (3^m)^k = 3^{6k} \]

This implies that \( m \cdot k = 6 \). We need to find all pairs \((m, k)\) such that \( m \cdot
k = 6 \). The possible pairs \((m, k)\) are:

1. \( (1, 6) \)
2. \( (2, 3) \)
3. \( (3, 2) \)
4. \( (6, 1) \)

For each pair \((m, k)\), we can find \( b \):

1. If \( m = 1 \) and \( k = 6 \), then \( b = 3^1 = 3 \).
2. If \( m = 2 \) and \( k = 3 \), then \( b = 3^2 = 9 \).
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3. If \( m = 3 \) and \( k = 2 \), then \( b = 3^3 = 27 \).
4. If \( m = 6 \) and \( k = 1 \), then \( b = 3^6 = 729 \).

Thus, the possible values of \( b \) are \( 3, 9, 27, \) and \( 729 \). There are 4 such values.

Therefore, the number of positive integers \( b \) that have the property that \(\log_{b} 729\)
is a positive integer is:\[\boxed{4}\]</think><answer> $4$ </answer>

Case Study of Qwen2.5-VL and FRE-Multi

Question: What is the median number of points scored by the team per game?

——————————————————————————————————————
Qwen2.5-VL:
<think>
Step 1: Identify all the data points in the stem and leaf plot.
From the stem and leaf plot, the points per game are as follows:
- 21
- 24
- 34, 35
- 49
- 56, 57, 58
- 66, 66
- 75, 76
- 84, 85, 85, 85
- 90

Step 2: Arrange the data points in ascending, descending or random order.
The points in ascending order are:
21, 24, 34, 35, 49, 56, 57, 58, 66, 66, 75, 76, 84, 85, 85, 85, 90

Step 3: Find the median.
Since there are 17 data points (an odd number), the median is the middle number when ordered.
In this case, the 9th number in the ordered list is the median.
The 9th number is 56.

Therefore, the median number of points scored per game is 56.

</think><answer> $\\boxed{56}$ </answer>

——————————————————————————————————————
FRE-Multi:
<think>
To find the median, I need to follow these steps:
1. List all the values in ascending order.\n2. Identify the middle value(s).
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Let’s list the values:\n20, 24, 20, 30, 34, 35, 40, 49, 50, 56, 57, 58, 60, 60, 66, 66, 70, 75,
76, 80, 85, 85, 85, 86, 90

There are 25 values, so the median will be the 13th value in this ordered list.
The 13th value is 60.

Therefore, the median number of points scored per game is 60.
</think><answer> $\\boxed{60}$ </answer>

Case Study of Qwen2.5-VL v.s. FRE-Multi

Question: What is the value of ‘legs’ for ‘grade’?

—————————————————————————————————————–
Qwen2.5-VL:

<think> To find the value of ’legs’ for ’grade’, we need to look at the legend of the graph,
which clearly indicates that ’legs’ are represented by the blue circles. After identifying
the data for \"grade\" in the graph, we see that the corresponding value for ’legs’ is 4.
Therefore, the value of ’legs’ for ’grade’ is 4.\n</think><answer> $\\boxed{4}$ </answer>

——————————————————————————————————————
FRE-Multi:

<think> The ’legs’ value for ’grade’ is shown on the bar chart as 4. </think><answer> $\\boxed
{4}$ </answer>
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Case Study of Qwen2.5-VL and FRE-Multi

Question: How many vehicles in the image have wheels?

——————————————————————————————————————
Qwen2.5-VL:

<think>
First, I’ll identify each vehicle in the image. There is a double bus (blue), a car (tan), a car

(yellow), a motorcycle (green), a scooter (cyan), and an airplane (gray). Some of these are
likely to have wheels.

Now, examining the vehicles one by one:
- The blue double bus typically has wheels.
- The tan car and the yellow car have wheels.
- The green motorcycle has two wheels.
- The scooter likely has two wheels as well.
- The gray airplane typically has small wheels beneath.

When considering this categorically, all of these vehicles seem to have wheels. However,
classifying vehicles as always having wheels or as having potential wheels introduces
subjectivity. Typically most vehicles have wheels unless otherwise specified, so I’ll make
conservative assumptions regarding certainty.

I’ll perform a count suggesting the vehicles have wheels:
1. The double bus has wheels.
2. The cars each usually have wheels.
3. The motorcycle presumably has wheels.
4. The scooter likely has typical two wheels.
5. The airplane typically has wheels.\n\nThus, I will count the potentially wheel-related

vehicles (assumed to have wheels before explicit confirmation):
1. (Wheel-like others might exist)\n\nFinal number of vehicles likely to have wheels:
\\boxed{4}
</think><answer> $\\boxed{4}$ </answer>

——————————————————————————————————————
FRE-Multi:

<think>
We need to count the number of vehicles with wheels in the image. Let’s identify them:

1. The blue bus has wheels.
2. The green motorcycle has wheels.
3. The brown sedan has wheels.
4. The yellow sedan has wheels.
5. The cyan scooter has wheels.

There are no other vehicles with wheels in the image.

Therefore, the total number of vehicles with wheels is 5.
</think><answer> $\\boxed{5}$ </answer>
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Case Study of Qwen2.5-VL and FRE-Multi

Question: What is the purpose of the left lane in the picture?
Choices:
(A) To show the results of immunofluorescent labeling
(B) To indicate the upper layer of synovial membranes
(C) To show the magnification of the image
(D) To display the results of immunohistochemistry

——————————————————————————————————————
Qwen2.5-VL:

<think> The image appears to be a microscope slide of tissue sections. The left lane
consistently showing up in the micrograph suggests that it is used to display the results
of immunohistochemistry, where antibodies are applied to stained tissue sections to detect
specific molecules. The other options do not align with the visual presentation and
technical names associated with immunohistochemistry. </think><answer> $\\boxed{D}$ </
answer>

——————————————————————————————————————
FRE-Multi:

<think> The presence of the arrow and the context suggest that the left lane is used to display
the results of immunohistochemistry. </think><answer> \\boxed{D} </answer>
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